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Abstract

Autonomous driving is revolutionizing public transportation and affects our daily lives. However, we

currently witness some decrease in the number of newly established companies introducing autonomous

vehicles. Beyond the post-COVID global economic situation, this report analyzes the technological

showstoppers and proposes possible research directions to imitate these obstacles. It focuses on studying

the research directions that could enable a robust and reliable autonomous vehicle operation in practical

urban conditions. Considering the practical challenges of the autonomous vehicle cost, operation in

complex and diverse scenarios, adverse weather conditions, and regulation challenges, this report sum-

marises the last year literature survey. It proposes a few possible directions for the near-future research.

I. INTROUCTION

Road traffic accidents caused approximately 1, 35 million deaths worldwide in 2016. Active

driver assistance systems (ADAS) have been shown to dramatically reduce traffic accidents

and causalities. The current global ADAS market of $27 billion is expected to grow to $83

billion by 2030. Multiple active safety features and some level of autonomy have already been

introduced in the majority of commercial vehicles, and the automotive industry is progressing

toward autonomous driving. An autonomous vehicle substitutes human drivers in both sensing

and decision-making. Therefore, it needs to collect information on the host’s vehicle location and

its surroundings. The situation awareness sensors are used to provide reliable, dense, and timely

information on the vehicle’s surroundings. In particular, they need to acquire information on the

vehicle’s drivable path and all objects above the road level. Sensors need to detect, localize, and

classify objects that could interfere with autonomous driving.
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Autonomous vehicles are typically equipped with multiple sensors of multiple modalities, such

as cameras, radars, and LiDARs [1]. Cameras resemble human driver vision and are the most

natural sensors for autonomous driving. However, cameras are sensitive to adverse weather and

poor lighting conditions, do not provide native range and velocity measurements, and have to be

mounted behind the optically transparent fascia. Therefore, the automotive sensing suit typically

includes radars [2]–[4]. In turn, radars are robust to adverse weather conditions, insensitive to

lighting conditions, provide long and accurate range measurements, and can be packaged behind

optically nontransparent fascia [5].

In recent years, autonomous vehicles have become a reality in multiple publically deployed

autonomous vehicle fleets. However, their wide deployment requires improved reliability for the

positive acceptance [6]. The short-, medium-, and long-term effects of autonomous vehicles

on urban transportation and the environment were conducted in [7]. It was concluded that

autonomous vehicles expect to influence urban transportation and human mobility by reducing

vehicle ownership, public and active travel, traffic delay and congestion, and travel costs and

increasing accessibility, mobility, vehicle miles traveled, and revenue generation for commercial

operators. The long-term effects include encouraging dispersed urban development, reducing

parking demand, and enhancing network capacity. Autonomous vehicles will reduce energy con-

sumption and protect the environment by reducing greenhouse gas emissions. They also expect

to reduce traffic crashes involving human errors and increase the convenience and productivity

of passengers by facilitating multitasking. However, most people are concerned about personal

safety, security, and privacy. The literature also shows that shared autonomous vehicles are well-

positioned to significantly positively impact transportation and the urban environment more than

private autonomous vehicles. shared autonomous vehicles in a dynamic ride-sharing situation

could be an effective policy option to reduce vehicle ownership, traffic congestion, and travel

time and improve the overall performance of the transportation system. Researchers proposed

to formulate appropriate funding mechanisms and policies to encourage ride-sharing and on-

demand mobility among travelers to increase the use of shared autonomous vehicles. Thus,

pertinent policies in transportation (e.g., automation of transit, integration of transit and non-

motorized transport, encouraging shared and micro-mobility), infrastructure (e.g., adjustment

and redesign of existing roads), and urban planning (e.g., update of urban development plans,

land-use plans, parking policies, and design, green belts) are essential to realizing the benefits

of autonomous vehicles. Moreover, the law and order situation needs to be improved to provide
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safety and security to passengers while sharing AVs.

This report summarises the major gaps in the autonomous vehicles technology reported in the

literature during 2023.

II. MISBEHAVIOR DETECTION

Connected and autonomous vehicles have various embedded components connected through

different communication technologies, and their security has become a vital concern [8]. There-

fore, Misbehavior Detection plays a significant role in enabling vehicles to quickly identify

security risks and adopt effective immediate countermeasures.

Misbehavior detection for autonomous vehicle communications refers to the ability of self-

driving cars to identify and respond to potentially problematic or malicious behavior in their

communication with other vehicles and systems [9]. This can include detecting and responding

to attempts to jam or interfere with their communication signals [10], identifying and responding

to false or misleading information, and recognizing and responding to attempts to hack or

compromise their systems. Misbehavior detection is important for maintaining the security

and reliability of the vehicle’s communication systems, and for ensuring the safe and efficient

operation of self-driving cars. It typically involves the use of advanced algorithms and machine

learning techniques to monitor and analyze the vehicle’s communication with other systems and

to identify and respond to potential misbehavior.

There is a need to develop approaches for misbehavior detection and the resulting cybersecurity

on various levels:

• Detection of the intended or unintended sensing interferer for radars, cameras, and LiDARs.

• Secured communication between vehicles (V2V) and vehicle to cloud (V2C).

• Secured central computers and faults-tolerant processing.

III. ADVERSE WEATHER

However, perception and sensing for autonomous driving under adverse weather conditions

have been the problem that kept autonomous vehicles (AVs) from going to higher autonomy for

a long time [11].

Weather phenomena have various negative influences. On average, global precipitation occurs

11.0% of the time [12]. It has been proven that the risk of accidents in rain conditions is 70%

higher than normal. 77% of the countries in the world receive snow. The United States national
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statistics show that each year over 30, 000 vehicle crashes occur on snowy or icy roads or during

snowfall or sleet. Phenomena like fog, haze, sandstorms, and strong light severely decrease

visibility and raise driving risks [13]. Secondary problems directly or circumstantially caused

by weather, such as heat coldness, and contamination, also have unpredictable or undesirable

effects on autonomous vehicles.

Harsh weather affects all sensors used for autonomous vehicles, radars, cameras, and Li-

DARs [14]. However, cameras and LiDARs are more sensitive to weather conditions. therefore,

the development of the weather-immune sensing suit is critical for the practical deployment of

autonomous vehicles.

Addressing harsh weather conditions requires the development of weather-immune sensing ca-

pabilities for LiDARs, cameras, and radars. The research necessary involves sensing technology,

signal processing algorithms, and fusion between multiple sensing modalities.

IV. VEHICLE CONTROL

Vehicle control is one of the most critical challenges in autonomous vehicles and connected and

automated vehicles are paramount in vehicle safety, passenger comfort, transportation efficiency,

and energy saving [15]. Nevertheless, certain critical parameters like longitudinal and lateral

velocity, sideslip angle, orientation, and tire forces cannot be directly gauged in the context of

commercial vehicles. These pivotal metrics can only be inferred indirectly. Within this realm, the

sideslip angle holds particular significance as it encompasses both longitudinal and lateral velocity

details, making its accuracy a key indicator of the precision of estimations for longitudinal and

lateral velocity. Despite its importance, the sideslip angle proves to be the most intricate among

the mentioned parameters, primarily due to the influence of errors from other states, such as

longitudinal velocity and roll angle [16]. Additionally, the sideslip angle plays a crucial role in

vehicle stabilization, motion planning, road condition assessment, handover modules, and vehicle

navigation [17]. In essence, without an accurately determined sideslip angle, the performance

of the aforementioned applications may be compromised or even lead to inevitable failure.

Consequently, the efficient and robust estimation of the vehicle sideslip angle has garnered

significant attention in the vehicle control community over the past few years.

While other states, such as longitudinal speed information, are also imperative for vehicle

control applications, their estimation is comparably simpler, and ample literature has effectively

addressed these concerns. Thus, in this endeavor, our focus is directed towards the estimation
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of the sideslip angle. Given its pivotal role in vehicle control, addressing this sideslip angle

estimation problem becomes imperative, necessitating a comprehensive review for readers. Draw-

ing from existing literature, we explore three primary approaches for sideslip angle estimation,

leveraging accessible data from affordable onboard sensors, including the steering wheel angle

sensor (SWAS), wheel speed sensors (WSS), the inertial measurement unit (IMU), and global

navigation satellite systems (GNSS) [18]. These approaches include the onboard-sensor-based

(OSB) approach, GNSS-augmented (GAU) approach, and artificial-intelligence-augmented (AIA)

approach [19].

The following are the possible proposed research topics to address the autonomous vehicle

control challenge: Multi-modal state estimation.

Beyond relying solely on GNSS, incorporating LiDAR and cameras into the mix can enhance

vehicle state estimation, thereby boosting overall accuracy. Nevertheless, these additional sensors

are vulnerable to environmental influences, including factors such as buildings, lighting condi-

tions, and weather. Moreover, their sampling latency and frequency exhibit substantial variations.

Consequently, it becomes imperative to assess the real-time confidence level of sensor signals

and devise robust fusion algorithms to mitigate these challenges.

Robust trajectory tracking control with state uncertainty

The presence of multi-modal information enables the real-time estimation of three-dimensional

vehicle attitude information. This expansion allows the vehicle control model to transition from

a two-dimensional plane to a three-dimensional space. Given that state estimation results may

exhibit a degree of uncertainty, it becomes paramount to consider the influence of this uncertainty

on the algorithm’s performance when crafting trajectory control algorithms.

Control challenge of heterogeneous dynamics in mixed-autonomy vehicle platoons

Addressing the collaboration and coordination between human-driven and autonomous vehicles

poses a substantial challenge for collaborative control techniques in mixed-autonomy traffic

scenarios. A key obstacle lies in the diverse dynamics introduced by the behavior of human

drivers within the vehicle platoon. Surmounting this challenge necessitates the development of

innovative control techniques capable of adapting to the variability of human drivers, all while

upholding safety and efficiency on the road. Potential solutions may involve the integration of

machine learning algorithms for predicting human driver behavior and the implementation of

hybrid control architectures that amalgamate centralized and decentralized control techniques.

This approach enables AVs to adjust to the conduct of human-driven vehicles while maintaining
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coordination within the platoon.

Resilience control techniques in the presence of cyber-attacks and communication failures

In a dynamic and unpredictable driving environment, the occurrence of communication and

sensing failures and potential disruptions by adversarial entities is a realistic concern. Conse-

quently, it becomes imperative to incorporate resilience control techniques into the collaborative

control framework. This integration empowers the system to persistently adapt to evolving

conditions, even when faced with faults, errors, or malicious attacks. Drawing upon insights

from the domain of cyber-physical systems proves to be an effective strategy for crafting resilient

collaborative control techniques for Connected and Autonomous Vehicles. Moreover, it is crucial

to factor in security and privacy requirements. Designing communication, sensing, and control

protocols with security and privacy considerations, which may involve encryption, authentication,

and access control mechanisms, becomes essential for ensuring the future safety and performance

of Connected and Autonomous Vehicles.

V. COMPUTING SYSTEM ARCHITECTURE

The computing system is crucial in Intelligent Vehicles, ensuring safety, security, energy

efficiency, and effective communication. Given that a typical autonomous vehicle is equipped

with an array of onboard sensors, such as Lidar, cameras, Radar, communication modules, and

the global navigation satellite system (GNSS), the generated data per minute can be substantial.

To manage the efficient processing and fusion of heterogeneous information, the computing

system must be adept at real-time information processing to maintain safe Autonomous Driving.

In [20], it was shown that the two primary computing architectures are widely employed in

Intelligent Vehicles: the modular design method and the end-to-end design method. The modular

design approach involves decoupling functional units into separate modules facilitating system

implementation, fault diagnosis, and module updates. Following this approach, the computing

architecture of Intelligent Vehicles can be categorized into critical modules, including com-

putation, communication, storage, security and privacy, and power management. Conversely,

contemporary artificial intelligence strongly influences end-to-end computing architecture, relying

predominantly on learning-based approaches to directly process sensing data and generate control

outputs.
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Despite notable advancements in the computing systems of Intelligent Vehicles in recent years,

several critical constraints persist across hardware, software, sensor layers, and more, hindering

the widespread deployment of commercial autonomous vehicles. A comprehensive analysis

in [21] identifies five key design constraints, namely performance constraints, predictability con-

straints, storage constraints, thermal constraints, and power constraints for Intelligent Vehicles.

Performance constraints primarily manifest at the application level. While Intelligent Vehicles

perform fundamental functions such as perception, planning, decision-making, and control, a

performance gap remains compared to human capabilities. Key performance constraints include

frame rate and processing latency. Given that a human driver reacts within 100 − 150 ms, the

vehicle, for safety reasons, should respond even faster, ideally within a latency of 100 ms and

a frequency of at least once every 100 ms [21].

Predictability is another critical constraint, encompassing both temporal aspects (meeting

time deadlines) and functional aspects (making correct decisions). In addition to conventional

mean latency metrics, tail latency (99.99th percentile latency) is advocated to meet stringent

predictability requirements [21].

Storage constraints emerge as an essential bottleneck for energy conservation and computing

performance on Intelligent Vehicles. A single autonomous vehicle can generate 2−40 TB of data

daily, necessitating high-speed, voluminous storage space. Real-time data storage and transfer

also significantly boost energy and power usage.

Thermal constraints pose considerations in two aspects: maintaining the operational tempera-

ture range and limiting the impact of heat generated by the computing system on the vehicle’s

thermal profile. Without a cooling system, the computing system’s 1 kW power consumption can

increase the in-cabin temperature by up to 10o per minute. Implementing the computing system

in a climate-controlled area with an additional cooling system becomes necessary to mitigate

thermal impacts.

Power constraints, a critical aspect influencing autonomous vehicle capabilities, encompass

power consumption of the computing system, storage consumption, and cooling overhead. The

cumulative effect of computing consumption and additional energy consumption for storage and

cooling can significantly decrease the mileage of Intelligent Vehicles, particularly electric ones.

For instance, a high-energy system like GPU can reduce fuel efficiency by up to 11.5% [21].

Therefore, there is a pressing need for more energy-efficient computing systems and green AI

techniques in the future of Intelligent Vehicles.
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VI. EXPLAINABLE ARTIFICIAL INTELLIGENCE

Autonomous vehicles already have a significant commercial, ethical, and technological ef-

fect [22]. The development of intelligent vehicles is the most promising path for driving au-

tonomy. Modern autonomous vehicles use artificial intelligence for a variety of tasks. While

pipeline architectures break down the driving task into more manageable components, providing

a somewhat interpretable processing of sensor data through specialized modules (perception,

planning, decision, control), they have several drawbacks. Firstly, they rely on human heuristics

and manually selected intermediate representations, which lack proof of optimality for the driving

task. Secondly, their handcrafted nature limits their ability to accommodate real-world uncertain-

ties, hindering their generalization to scenarios not anticipated by system designers. Furthermore,

from an engineering perspective, these systems are challenging to scale and maintain due to the

interdependency of various modules [23]. Lastly, they are susceptible to error propagation among

the multiple sub-modules [24].

Autonomous driving is a safety-critical application. Therefore, the performance guarantees

are required. However, artificial intelligence (AI) based self-driving vehicles are not entirely

testable under all scenarios as it is not possible to exhaustively list and evaluate every situation

they may encounter. The AI-based solutions overcome some of the limitations of the modular

pipeline stack. They are sometimes described as black boxes for their critical lack of transparency

and interpretability. Indeed, as trained within the deep learning paradigm, they fall into the

known shortcomings associated with these architectures. In this paper, we focus on models

learned by behavior cloning, which leverages datasets of human driving sessions, as opposed to

reinforcement learning approaches, which train models through trial-and-error simulation. As a

fallback solution, this motivates the need for an explanation of driving decisions. The onboard

explainability of perception, localization, decision-making, and control, grounded in multimodal

signals from sensor systems, is a crucial design prerequisite for the future deployment and

global acceptance of commercial autonomous vehicles [25]. The explainability of autonomous

vehicles can be further dissected into interpretability and completeness. Within interpretability,

transparency and post-hoc explanation emerge as two primary branches [26]. Additionally,

achieving local explanation versus global explanation necessitates distinct computing system

designs for autonomous vehicles [26]. Essentially, the design criteria for an explainable interface

for autonomous vehicles align with societal and legal requirements and play a pivotal role in
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fostering safer, transparent, publicly accepted, and environmentally friendly autonomous vehi-

cles [27].

VII. ARTIFICIAL INTELLIGENCE FOR AUTOMOTIVE RADAR PROCESSING

Modern sensing suit includes LiDARs, cameras, and radars, where radars provide extended

object detection ranges, direct measurement of an object’s velocity, and reliability in adverse

weather and poor lighting conditions [1], [3], [28], [29].

Radars obtain information on the vehicle surroundings by processing electromagnetic echoes

returned from the reflective surfaces [30]. Radars’ operation in dense urban environments is

characterized by reflections from multiple artificial surfaces, such as buildings and guardrails [31],

[32]. Automotive radars operate at the 77GHz frequency band, with a short wavelength of ∼

3.8mm [1], [30]. Therefore, these reflective surfaces are flat compared with the radar wavelength

and, as a result, induce multipath propagation phenomena [33]–[36].

The indirect radar echoes returned via reflection from the auxiliary flat surfaces are frequently

indistinguishable from the direct target reflections [33]. When direct and indirect reflections

occupy different range-Doppler-direction cells, the conventional radar receiver processes them

separately. As a result, the indirect reflections may be interpreted as “ghost” targets [33].

These “ghost” targets degrade radar performance by increasing the probability of false alarms,

decreasing the probability of detection, and resulting in a significant waste of radar computational

resources [30].

Accurate modeling of the multipath propagation phenomena in practical urban scenarios is

challenged by the large number of reflective surfaces in the scene and the variety of their proper-

ties. Moreover, short radar wavelength and the lack of millimeter-level host vehicle localization

accuracy in dynamic automotive scenarios induce time-varying clutter that is received at the

non-zero Doppler frequencies. These conditions limit the applicability of the conventional ray-

tracing-based multipath propagation modeling approaches, which are widely used in cellular

networks [37]–[40].

Recently, data-driven deep learning (DL) approaches addressing the high model dimensionality,

non-linearity, and modeling complexity challenges were introduced for automotive radars’ target

detection [41]–[45], classification [46]–[52], tracking [50], [53], and interference mitigation [54]–

[61]. The DL approaches require an extensive, accurately annotated database for deep neural

network (DNN) training. Data annotation is an extremely expensive and labor-intensive task [62]–
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[64]. Multiple semi-automatic and learning-based approaches were proposed for the annotation

of automotive visual [65]–[68] and LiDAR [69], [70] datasets. Recently, several approaches for

annotation burden reduction by combining the synthetic with the collected data were proposed

in the literature [71], [72].

Radar data annotation is even more challenging for human annotators because its appearance

is non-intuitive and unnatural compared to visual data [70], [73]–[75]. Furthermore, annotating

the automotive radar data collected in the multipath-dominated urban scenarios is even more

labor-demanding, requires expert-level knowledge, and is prone to multiple annotation errors

associated with the “ghost” targets appearance [76].

Recently, the automotive radar data annotation approach using auxiliary sensors was introduced

in [77]. This approach exploited the correlation between radar and LiDAR detections to annotate

the automotive radar data. However, LiDAR’s inherent limitations, such as limited range and

sensing sparsity, can result in false- and miss-labeling [78]. Moreover, this approach does not

allow fine-granularity labeling to distinguish between the actual target and the reflector, the

reflector type, and the multipath reflection order.

Therefore, there is a need for radar multipath annotation to address the problem in [79] as

one of the major challenges in DNN-based automotive radar processing. One possible research

direction is the development of automated annotation methods to convert the publically available

datasets into fine-granularity multipath-annotated datasets, with the labeling level that is currently

available only in the small limited datasets [76].

VIII. DETECTION USING DIFFUSION MODELS FOR AUTONOMOUS DRIVING

The development of diffusion models [80] has shown to be remarkably successful in image

generation, surpassing other approaches’ performance. Diffusion is also a better approach for

generating traffic scenes. Latent diffusion is especially well suited for generating traffic scenes

due to decoupling latent and output spaces [81], [82].

A probabilistic model based on diffusion, referred to here as a ”diffusion model” for concise-

ness, is a parameterized Markov chain trained through variational inference to generate samples

that align with the data over a finite period. The transitions within this chain are learned to

invert a diffusion process, which involves a Markov chain progressively introducing noise to

the data in the reverse direction of sampling until the signal is obliterated. In cases where the

diffusion involves minor increments of Gaussian noise, it is feasible to configure the transitions of
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the sampling chain as conditional Gaussians, enabling a notably straightforward neural network

parameterization [83]. There is a need for further research to exploit all potential of diffusion

models for autonomous driving.

IX. VISION LANGUAGE MODELS FOR AUTONOMOUS DRIVING

Closed-set 3D perception models trained on only a pre-defined set of object categories can be

inadequate for safety-critical applications such as autonomous driving, where new object types

can be encountered after deployment [84]. Ove the recent few years, a novel learning paradigm,

Pre-training, Fine-tuning, and Prediction, has showcased significant effectiveness across a broad

spectrum of visual recognition tasks [85]. Within this paradigm, a Deep Neural Network (DNN)

model undergoes an initial phase of pre-training using off-the-shelf large-scale training data,

whether annotated or unannotated [86]. Following this, the pre-trained model is fine-tuned using

task-specific annotated training data. Harnessing the comprehensive knowledge acquired during

pre-training, this learning paradigm expedites network convergence and facilitates the training

of high-performing models for various downstream tasks.

However, despite its success, the Pre-training, Fine-tuning, and Prediction paradigm still

requires an additional stage of task-specific fine-tuning using labeled training data from each

downstream task. Drawing inspiration from advancements in natural language processing [87],

a novel deep learning paradigm known as Vision-Language Model Pre-training and Zero-shot

Prediction has recently garnered increased attention [88]. In this paradigm, a Vision-Language

Model (VLM) undergoes pre-training using large-scale image-text pairs abundantly available

online [89]. The pre-trained VLM can then be directly applied to downstream visual recognition

tasks without fine-tuning. The VLM pre-training is typically guided by specific vision-language

objectives that enable the learning of image-text correspondences from extensive image-text

pairs [90], [91]. Exploiting these paradigms is a promising area to be investigated in future

research for a variety of autonomous driving tasks.

X. FEW-SHORT LEARNING FOR AUTONOMOUS DRIVING

Autonomous vehicles encounter a multitude of unknown objects, some of which are rarely

seen or entirely new, such as the next generation of concept cars or traffic signs adorned with

graffiti [92]. Addressing this challenge necessitates the development of innovative approaches to

object recognition problems that involve less human supervision and fewer annotated datasets.
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While various methods attempt to utilize web images for training deep learning models, the issue

of noisy images persists, and the reliance on human-supplied search keywords remains a form

of human supervision. Two solutions, namely One-Shot Learning (OSL) and Few-Shot Learning

(FSL), offer the capability to learn new categories with just one or a few images, respectively [93],

[94], [95], [92]. Few-shot learning (FSL) involves learning new classes using a minimal training

dataset, typically consisting of one or a few images per category. FSL is intricately connected

to knowledge transfer, wherein a model previously trained on extensive data is applied to a

similar task with reduced training data. The effectiveness of FSL’s generalization hinges on the

accuracy of the transferred knowledge. Furthermore, numerous approaches utilize meta-learning

to comprehend the challenges of few-shot or few-example learning. The primary hurdle lies in

enhancing generalization ability, as FSL frequently grapples with the issue of overfitting. In the

case of one-shot learning, there is only 1 example per class in the supporting set, thus it faces

more challenge in comparison to the FSL and Zero-shot learning is the extreme case of the FSL.

XI. GENERATIVE AI FOR AUTONOMOUS DRIVING

The prospective solution of the vehicular mixed reality (MR) Metaverse for achieving au-

tonomous driving involves integrating physical and virtual vehicular networks [96], [97]. En-

abling multi-dimensional communications among physical and virtual entities can eliminate

the isolation of ”data islands” on roads, leading to enhanced road safety and traffic efficiency

while concurrently lowering energy consumption and carbon emissions [98]. With the support

of digital twin (DT) technologies, autonomous vehicles (AVs) leverage advanced sensors such

as ultrasonic radars, cameras, and LiDAR to gather data from their surroundings and construct

virtual representations in the virtual space [99]. Subsequently, AVs can make driving decisions,

including driving model selection and motion planning, utilizing artificial intelligence (AI)

methods. Despite the presence of panoramic cameras and high-grade LiDAR in AVs, each

vehicle can only capture limited environmental data and may miss aspects like occlusions [].

Therefore, the collaboration of multiple connected AVs, roadside units (RSUs), and virtual

simulators becomes crucial for sharing and merging sensing data in the virtual space [100].

This collaboration enables the perception of comprehensive environmental information, including

occlusions [101]. However, directly collecting realistic driving data on a large scale to train AVs

in the physical world is challenging and expensive. Addressing these challenges requires research

in generative AI [101].
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XII. SEMANTIC SEGMENTATION FOR AUTONOMOUS DRIVING

While deep learning has found extensive application in computer vision, particularly in areas

like self-driving cars, the emphasis has often been on achieving state-of-the-art results without

sufficient attention to the safety implications of different classes. In many models, all classes

are treated uniformly, and the focus is primarily on average precision. However, not all classes

contribute equally to the reliability and safety of autonomous driving systems. For instance, the

Person class should be accorded higher priority than the Sky class in terms of segmentation

accuracy [102].

A critical aspect for future research involves addressing how semantic segmentation for au-

tonomous driving systems can be enhanced by considering salient class considerations. This

encompasses dealing with challenging instances of crucial classes and maintaining a balanced

trade-off between accuracy and inference latency.

The imperative is to elevate semantic segmentation for autonomous driving systems by giving

precedence to the precise detection and segmentation of critical classes, such as persons, which

directly impact safety. Additionally, there is a need to tackle instances where important classes

may be partially obscured or manifest in different appearances.

XIII. COMMUNICATION

The decision-making capacity of individual vehicles is constrained by onboard computing and

storage resources, posing challenges in coping with the demands of dense and mixed traffic

flow environments. Consequently, autonomous vehicles must enhance their intelligence levels

and broaden sensing and decision-making capabilities by leveraging external information and

resources through wireless communications.

Unlike traditional cellular network mobile terminals, vehicles’ high-speed movement leads

to dynamic changes in network topology and frequent communication link switches [103].

Simultaneously, the intricate and variable driving environment introduces multipath effects and

interference from other signals for vehicular communication. Safety-critical applications, like

collision avoidance and platooning of Intelligent Vehicles (autonomous vehicle), necessitate

networks to meet stringent low latency and ultrahigh reliability requirements, often challenging

for traditional wireless networks. Therefore, autonomous vehicle should adopt dedicated commu-

nication technologies to ensure efficient and stable interactions between vehicles, infrastructure,

and cloud platforms [104].
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As an extension of the perception capabilities of Autonomous Driving (AD) and autonomous

vehicles, vehicular communication involves the vehicles themselves and various elements of

transportation, communication, and other systems [105]. This integration and convergence rep-

resent a focal point for the automotive, transportation, communication, and information in-

dustries [106]. Vehicular communication technology originated from academic research and

demonstration projects in Europe and the United States at the end of the 20th century, initially

known as vehicular ad-hoc network (VANET) [107]. With advancements in information and

communication technologies, the concept evolved from VANET to the Internet of Vehicles,

gaining attention for its supporting role in intelligent transportation and AD [108].

Expanding on this concept, vehicular communication technology has progressed from VANET

connecting vehicles and infrastructure to Vehicle-to-Everything (V2X) [109], linking various

transportation system elements, such as vehicles, infrastructures, pedestrians, and clouds [110].

Specifically, V2X encompasses two types of technologies: 1) dedicated short-range communica-

tion (DSRC) standardized by IEEE and 2) cellular V2X (C-V2X) standardized by the 3rd Gen-

eration Partnership Project (3GPP). In terms of communication methods, V2X communication

can be categorized into V2V, V2I, vehicle-to-pedestrian (V2P), and vehicle-to-cloud/network

(V2C/N) communication. Consequently, vehicular networks facilitate real-time and efficient

information interaction among pedestrians, vehicles, infrastructures, and clouds, supporting AD

and autonomous vehicles’ massive data transmission needs.

The further development of connected and shared autonomous vehicles requires standardization

of the communication protocols, security of the vehicle-to-cloud communication, and adoption

of the higher-speed communication approaches.

XIV. PROPOSED RESEARCH TOPICS

• Detection of the intended or unintended sensing interferer for radars, cameras, and LiDARs.

• Secured communication between vehicles (V2V) and vehicle to cloud (V2C).

• Secured central computers and faults-tolerant processing.

• Harsh weather detection and sensing in adverse weather conditions.

• Robust and secured autonomous vehicle control .

• Low consumption power and on-the-edge compute architectures.

• Explainable artificial intelligence for autonomous driving.

• Artificial intelligence for automotive radar processing.
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• Diffusion models for autonomous driving.

• Vision language models for autonomous driving.

• Few-short learning for autonomous driving.

• Generative artificial intelligence for autonomous driving.

• Advanced semantic segmentation for autonomous driving.

• Vehicle-to-vehicle and Vehicle-to-Cloud resilient communication and standardization.
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