
Real-Time Scheduling Autonomous Vehicles at Intersections*

Shlomi Dolev
 Dept. Computer Science

 Ben-Gurion University of the

Negev

 Be’er Sheva, Israel

dolev@cs.bgu.ac.il

Ehud Gudes
 Dept. Computer Science

 Ben-Gurion University of the

Negev

 Be’er Sheva, Israel

 ehud@cs.bgu.ac.il

Hannah Yair†
 Dept. Computer Science

Ben-Gurion University of the

Negev

 Be’er Sheva, Israel

hannaya@post.bgu.ac.il

ABSTRACT

Emergency situations involve massive movements of (both

logistically and units of movements) platoons to and from focal

locations. Platoons may move in different directions and block

each other in junctions, causing even deadlocks. The possibility to

minimize the delay in junctions, particularly non-stopping, and

waiting for a (virtual) green light, may avoid the chain phenomena

of cascade stopping and cascade starting to move again, when all

cars wait for the car in front of them to gain enough velocity. The

remote driving system is an opportunity to stream all platoons

driving in different directions without stopping, by spacing

vehicles to allow conflicting traffic to move in the space between

vehicles.

 In this work, we present an algorithm for real-time junction

scheduling towards the non-stopping junction. We demonstrate

the results that imply road safety as actions are remotely

controlled, by using the SUMO simulator [1].

KEYWORDS

 Scheduling, Platoon, Junction, Virtual Traffic Light.

1 Virtual Traffic Lights

The main idea of the Virtual Traffic Lights is to synchronize the

vehicles coming to the junction in such a way that vehicles do not

stop at all. They will not stop to let others cross the junction or

wait for others to evacuate the junction.

 Under the assumption that all vehicles on the road are

autonomous and computer-controlled, the solution for Virtual

Traffic Lights is early handling of junction management. That is,

calculating the timing at a reasonable distance D before the

junction and maintaining a sufficient distance between the

vehicles before the junction, allowing flexibility of deceleration or

acceleration of the vehicles in order for them to cross the junction

as safely and quickly as possible.

 The timing principle is “first come, first served”. The vehicles

that are closer to the junction by a given distance D are the ones

that are timed first crossing the junction. Additionally, the

vehicles arriving at the junction will cross it at high speed to

evacuate the junction as quickly as possible.

 In other words, the order of priority between the lanes entering

the junction is equal. That is why there is no starvation; this

principle produces a junction in which the vehicles cross in analog

to a zipper.

 In Fig. 1, a snapshot is

shown from the algorithm

for vehicle synchroniza-

tion running at a non-stop

junction slightly describes

the zipper situation, and it

is apparent that the lights

in all directions at the

junction are green. This

figure depicts the equal Figure 1: Simulator snapshot

order of priority between all lanes entering the junction. Note that

in practice, there is no need for a physical traffic light. A

demonstration video of the preliminary version [2] can be found

in here.

Related work. A detailed overview of the related work and

comparison with our novel approach can be done easily with [2].

2 Virtual Traffic Lights Algorithm

The algorithm idea is to utilize the junction as much as possible.

Most important, it does not cause vehicles to stop before or at a

junction but only cause them to move slightly slower.

2.1 Definitions

1. lanes is defined as the set of all lanes entering the junction.

2. c(li) is defined as the group of lanes that lane li has conflict

with.

3. D is defined as the distance threshold from the entries of the

junction along the lanes.

4. batcht is the group of vehicles that are currently present

exactly in a distance D (or smaller) in the time-unit t.

5. layert is defined as a subset of vehicles belonging to batcht

that can arrive at the junction at the same time and can cross

it without collisions.

With the above terms, it can be said that the objective is to

maximize the size of the layers and create a minimum number of

layers from a batch.
 In Fig. 2 we present an example of a junction with marks of the

definition c(li). Where the lanes' length is D (and possibly they are

parts of the whole lanes), note that size of lanes=12.

∗ This study extends the preliminary version [2].
†Corresponding author.

https://protect.checkpoint.com/v2/___https://drive.google.com/file/d/1-R2n7-aqiLFBNtfJe3FH4NDB4uMZuz31/view?usp=sharing___.YzJlOnRlY2huaW9uOmM6bzo3ZTdmYjZkZWU4MTEwZjQ1ZTZjYzZkMWVlMDc1ZGQ5OTo2OjQwZDM6YTExNDVjMTYzZDY3ZDRjOTQ1NWFjYjNlYWMyM2NlNzQ1N2JiZjgxY2MyYmUxODBhZWI5OWQ5MmE3OTYwYjA0ZTpwOlQ

Real-Time Scheduling Autonomous Vehicles at Intersections H. Yair et al.

.

 Figure 2: Definitions example

2.2 Outline of the Algorithm

The goal of the algorithm is to optimize the average waiting time

of vehicles in a batch. Therefore, according to the function c(li)

that defines the group of lanes that lane li has a conflict with.

 The table S is calculated, which contains the optimal separation

into layers for every possible batch, where the optimal separation

is the separation, which gives the minimum average waiting time.

Note that the problem of finding the optimal separation into layers

for a batch is NP-hard.

 The calculation method of table S is by dynamic programming

and the way of calculating the minimum average waiting time

could be by many different heuristic/approximation algorithms

which give an estimated solution in a more efficient way, for

example, [2-4]. However since lanes is small and constant, then it

is better to get an inefficient but accurate solution than an

estimated solution with an efficient calculation. Table S is built

once for each junction and then is used directly by the scheduling

algorithm. The scheduling algorithm works as follows:

 At each given time-unit t, all of the vehicles that are close to the

junction at distance D are collected (batcht) and scheduled in the

following way.

 Check the possibility of joining for every vehicle in the batcht

to an existing layer that was received by the previous batches and

schedule their crossing time by the parameter T of the layerT that

they join to. After enabling vehicles from the current batch to join

previous layers, the current batch is updated with a reduced set of

vehicles. Then, for the remaining vehicles (the vehicles that

cannot join to any previous layers) get the optimal separation

from the table S into new layers. A schedule for those layers is

built thereafter with the necessary crossing time T for each layer.

For each layer in the current batch that has passed the junction,

the parameter clearIndicator which indicates when the junction is

empty, is set.

 Finally, it is required to update the vehicle velocity by the

distance and their calculated crossing time.
 In Table 1 we present a demonstration of three iterations of the

algorithm, where the junction is according to the example

presented in Fig. 2.

 0 1 2 3 4 5 6 7 8 9 10 11

batcht x x x x x x x

layerT1 x x x x x x

layerT2 x x x x x

layerT3 x x x x x

 0 1 2 3 4 5 6 7 8 9 10 11

batcht+1 x x x x x x x x

layerT4 x x

layerT5 x x

 0 1 2 3 4 5 6 7 8 9 10 11

batcht+2 x x x x x x x x

layerT6 x x

layerT7 x

 Table 1: Scheduling layers

Every color in the table marks an iteration in the demonstration.

The columns describe the lanes in the junction, and the rows

describe batches or layers. In the batcht+1 rows, the marks x

describe in which lanes there are vehicles. In the layerTi rows, the

marks x describe from which lanes vehicles are joining that

layerTi and, the colored blank spaces describe the conflicts with

the elements of the layerTi. The color of the marks x and the

colored blank spaces are related to the iteration they joined and

the conflicts of the elements with the same color. As seen in the

table, for the first batch, layer 1 collects vehicles in lanes:

1,3,6,7,9, layer 2 collects vehicles from lane 4, and layer 3

collects vehicles from lane 11. The orange “x” indicates vehicles

that joined from a later batch (e.g. vehicle in lane 0 in layer 1).

In conclusion, this work focuses on a real-time scheduling

algorithm for autonomous vehicles in one junction, that is based

on a conflicts function, separation table, and an indication

parameter for emptying the junction. The algorithm works with

different types of junctions and ensures smooth crossing of the

junction with minimal waiting time (heuristics). This work can be

extended to scheduling road traffic of platoons smoothly through

one or many junctions of the road graph.

ACKNOWLEDGMENTS

This work partially funded by the Andromeda MAGNET

Consortium of the Israeli Innovation Authority, the Israeli Smart

Transportation Research Center, the Lynne and William Frankel

Center for Computer Science, and by Rita Altura chair in

computer science.

REFERENCES
[1] Lopez, P.A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Fl¨otter¨od, Y.P.,

Hilbrich, R., L¨ucken, L., Rummel, J., Wagner, P., Wießner, E.: Microscopic

traffic simulation using sumo. In: The 21st IEEE International Conference on

Intelligent Transportation Systems. IEEE (2018).

[2] S. Dolev, E. Gudes, H. Yair, Non-stopping junctions via traffic scheduling, in:

Cyber Security, Cryptology, and Machine Learning: 6th International

Symposium, CSCML 2022.

[3] F. Happach, L. Hellerstein, and T. Lidbetter, “A general framework for

approximating min sum ordering problems,” 2020.

[4] S. Dolev and A. Kesselman, “Bounded latency scheduling scheme for

atm cells,” Computer Networks, 2000.

